
CALCULATION OF EMITTANCE OF A DISPERSE SYSTEM 

V. I. Kovenskii UDC 66.096.5 

The emittance of a disperse system is calculated under the assumption that the 
particles forming the system have a diffuse gray surface. The calculated re- 
sults are compared with experiment. 

Radiation heat transfer is important in high'temperature (1000~ and above) disperse 
systems. In order to calculate the radiant flux it is necessary to know the emissivity of 
the surfaces taking part in the heat exchange -- in the present case the emissivity of the 
surface of a fluidized bed. 

Experiments [I-6] have shown that the emittance of a dispersion medium depends mainly 
on the emissivity of the particles forming the system. By using the methods presented in 
[7,8] for calculating emittance, the emissivity of the surface of a fluidized bed can be 
estimated. The appreciable difference between the calculated and experimental results can 
be accounted for by the fact that these methods do not take account of the interaction of 
the particles (multiple reflections of radiation from particles), which is important in a 
concentrated dispersion medium. 

In the present article the emissivity of the surface of a concentrated dispersion me- 
dium is calculated by taking account of multiple reflection of radiation from the particles 
and using the following assumptions and model of the system: 

1) the particles are spherical and opaque with a diffuse gray surface with emissivity 
~p; 

2) the medium in which the particles are dispersed is transparent; 

3) the actual disordered disperse system is represented as an assembly of parallel 
planes, each of which has particles at the nodes of a square net. 

Henceforth, the pitch of the net (the distance between centers of neighboring particles) 
is a parameter of the calculation, and is varied from I-I0 particle diameters. 

Since a concentrated disperse system is considered in the present article, the concepts 
of geometrical optics are used in the Calculation [9]. 

The model is composed of gray particles, and, according to Kirchhoff's law [9], the 
emissivity of the disperse system is equal to its absorptivity. Therefore the interaction 
of the system with external radiation is investigated, and the self-radiation of the parti- 
cles is assumed equal to zero. This procedure is possible for an isothermal system [8,9]. 

As has been pointed out, a disperse system is considered as an assembly of plane models. 
The external radiation incident on such a plane formed by a regular arrangement of spheres 
is partly reflected, partly absorbed, and partly transmitted. If the characteristics of this 
plane rt, Tt, and et are known, the reflection and transmission coefficients of a stack of n 
planes can be calculated by using the recurrence formulas [10] 

2 rt Tn-- 1 Tt Tn-- 1 
, v~ ( 1 )  rn=rn--1 ~ l~rn_lrt  1--rn-lrt 

By going to the limit n § ~, the absorptance of an infinite medium, and consequently the 
emissivity of its surface (lim Tn = 0, r n + Rm, en + Em, Rm + gm = I), can be determined. 

The values of rt, Tt, and st are determined by using the auxiliary scheme shown in Fig. 
I, which consists of two ideal black planes I and 3 and a two-dimensional model of a disper- 
sion medium 2. A radiation flux with a surface density qb is specified on plane I. However, 
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Fig. 2. Finite model of a dispersion medium. 

such a scheme is still too complicated, since it is necessary to take account of the inter- 
action of a large number of particles. The scheme is further simplified by changing from 
infinite planes to a finite model (Fig. 2). Figure 2 shows a cell formed by el&ments of 
black planes I and 3 (faces 1 and n), elements of spheres (a, a', c, c', d, d', i, i') and 
closed by an auxiliary system of black faces (e, f, g, h, e', f', g', h'). The transfer of 
radiation between infinite planes does not depend on the distance between them [8]. For con- 
venience it is assumed equal to the distance between centers of neighboring particles yp. 
Quadrants of spherical particles of unit radius are placed at the vertices common to the two 
cubes into which the cell can be divided. A radiation flux of density qb is specified on 
the faces e, f, g, h, 1 of the lower cube. In addition, radiation fluxes of densities qbs 
and qbs are specified on the lateral faces (e f, g, h) of the lower cube and (e' f' g' 
h') of the upper cube, respectively. These fluxes result from the reflection of radiation 
from the surfaces of all the remaining particles of the two-dimensional disperse model which 
are not in the cell. Through face m, which is common to the upper and lower cubes~ there 
pass a radiation flux with a density qbm + ~m from the upper cube into the lower and a flux 

! , TT 

with a density qbm + 6m + qbm from the lower cube into the upper. On the surfaces of the 
octants of the spheres a', i', c', d' belonging to the upper cube, and a, i, c, d belonging 

' + and qp + ~p to the lower cube the radiation flux densities are written in the form qp ~p 
! I! 

respectively. Here the components of the fluxes qbm, qbm, qbm, qp, and qp result from the 
transformation in the cell of the given flux qb, and the components ~m, 6p, and 0p from 
the transformation of the fluxes qbs and qbs. After all the fluxes are determined in terms 
of the given flux qb, the reflection, transmission, and absorption coefficients of the two- 
dimensional model can be calculated. 

The transfer of radiation in the cell is calculated from the system of equations given 
in [9]. The solution of this system requires knowing the dimensions and emittances of the 
surfaces forming the system, and the angular coefficients. The abbreviated notations for 
the angular coefficients shown in Table I are used from now on. Some of the angular coeffi- 
cients were calculated numerically by the eubature formulas given in [l l] and by the three- 
term interpolation formula [12] with an error of less than I%. The remaining were found by 
using the algebra of the angular coefficients [9]. 

The propagation of the radiation flux qb in the cell is described by the equations 

aiq'p - -  3rpCC~qp = 2rpLCqb ,. (2 )  

- -  3rvCCrq p + ajqv = a~rpqb , 

where 

a l =  l - - r  v(2p-kQ); a2=T-k2(G-kH).  
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TABLE 1. Notations for the Angular Coefficients ~u-B 
for Various Elements of the Model in Fig. 2 
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After solving Eqs. (2), the components of the fluxes at the surfaces of the cell resulting 
from the scattering of the flux qb can be written in the form 

qp = aaqb, q~ = asqb , qb~ = 4C~qb,  q~= = 4Lqb, q~m = 4Cr~qb , (3) 
where 

aia~ + 6rpLC~C~ . 
a a = r p  a~--(3rpCC~) z ' 

3 2%C 
a~ = L + - ~  C~a3; a s =  - -  a~. 

a t  

Now it is necessary to calculate the components of the fluxes iProduced by radiation re- 
flected from particles outside the cell. The quantities qbs and qbs are not determined, but 
they can be related to the required components of the flux. The cell under consideration is 
separated from an infinite set of cells forming the scheme shown in Fig. I, and must be iden- 
tical with all the others. Therefore, the energy flux incident on any lateral face of the 
upper (lower) cube as a result of reflection from the surfaces of particles of the cell must 
be the same as that from the outside which results from the scattering from particles. Hence 
for any lateral face of the upper (lower) cube 

/q-/ + / 
tq;s, :aS{O'p-i-~pl~l ClT{ 3Lqb ._}_~Cr(qp_~p>, , 

where Sp = ~12 is the area of an octant of a unit sphere; 

S0 -- 4y~ -- ~ Sp (G + H) . 
-i; S~=4y~--~; a0=2 Sb(I--2Y-Z) ' 

S~L 
~7 =-- 

Sb (1 - -  2Y-- Z) 

Now by taking account of these relations the following system of equations can be written 
for the still unknown components: 

a,8~ = 2 (G + H) rvq~s. + rpC (2Lqb 8 + 3Cr6p); q~s = a6 (q~ + 6~) + a7 [3Lqb, + 2Cr (qp + 6p)], 

5~ = 4 (Lqb 8 -[- CrSv), a15 v = 2  (G + H) rpqb~ + 

(5) 

-}- rvC (2Lq~ s + 3Cr6p), Oh, = as (qp + 5p) + a7 [3Lqb8 -[- 2Cr (qp + 5p)], 6rn = 4 [Lq'bs + CrS~). 

By using Eqs. (5) and (3) all the components of the fluxes in a cell can be expressed 
in terms of the external radiation flux density qb. Then the reflected, transmitted, and 
absorbed fluxes are found from the following formulas: 

Qref =4TSp(qP-}-6P)"~-4KSbqbs + Sm[(M-[- 2L'+'Cr) q bm q- MSra'J~-4L(L-t- 2Cr) qs 8"p], (6) 
Qtrans = Sm {[4L (4L + M) -}- M] qb + MS~ n "k- (M -]- 2L + Cr) q'b'~ + 

-? 2C~q~ m + 4L (L -F 2C~) qb~ -{- 4C~ (2L + Cr) 6p} -]- 4SbKqb, + 4SpT (q'p + 6j), 
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Fig. 3 Fig. 4 

Fig. 3. Dependence of emissivity of surface of a dispersion 
medium on distance between centers of particles forming the 
medium for various values of gp: I) 0.0|; 2) 0.25; 3) 0.5; 
4) 0.75; 5) 0.95. 

Fig. 4. Dependence of emissivity of surface of a fluidized 
bed on emissivity of particle surface ep: I) YD = 9.5; II) 
yp = I; III) calculated from Eqs. of [6]. Experimental points: 
l -4  [1] ;  5-10 [2] ;  I1,  ]2 [3] ;  13 [4] ;  14-17 [5] ;  18, 19 [6] ;  
1, 7, 16) sand;  2, 9, ]2,  17) chamot t e ;  3, 15, 18) Zr02; 4, 5, 
lO, 11, 13, 14) clean corundum; 6) magnesite; 8) blackened 
corundum; 19) material with a high alumina content. 

Qabs = 4epSp ((a2 -~ CL) qb + 2 (G -~ H -F CL) (qb~ -4- q~) -i- 

q-- (2P -+- Q) (qj, %- qS) -6 (2P -Jr- Q q- 3CCr) (5p%- 6S) --}- --~ C (qbm -~ q~Sn) �9 

The total external flux entering the cell and incident on the model (surfaces ~, i, c, d, m) 
can be written in the form 

Qin = [4Sp a2 -F ~ L  + M) Sm] qb . (7) 

Now the reflection, transmission, and absorption coefficients of the two-dimensional 
model of a dispersion medium can be found as the ratios of the corresponding fluxes to the 
incident flux: 

Qref Qtram Qab_____L ~ r , -  Qi. ' ~ t -  Q i ~ ' ~ * =  Oin (8) 

As the distance between particles is increased, the reflection and absorption coeffi- 
cients of the model decrease, and as yp § ~ the following relations hold: 

lim rt = O, lim et = O, limTt = 1. (9) 

The results of calculations performed for various values of the emissivity of the par- 
ticle surface (~p = 0.01-0.99) and the distance between particles (yp = ].01-9.5) are shown 
in Figs. 3 and 4. The experimental results reported in [6] verify that the emittance of a 
disperse system is independent of the distance between particle centers as the bed is in- 
creased in thickness, and confirm the assumption of the structure of a disperse system used 
in the solution. Figure 4 shows the calculated dependence of sm on Sp and the results of 
measurements of the emissivity of a fluidized bed reported in [I-6]. As can be seen from 
Fig. 4, the calculated and experimental data are in good agreement, with an average deviation 
of 10% and a maximum of 25%. From the results of the calculation the'emittance of a disperse 
system can be determined from the known emissivity of theparticles forming it. 

NOTATION 

Ep, emissivity of particle surface; rp, reflection coefficient for particle surface; yp, 
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distance between particle centers in model; rt, Tt, Et, reflection, transmission, and absorp- 
tion coefficients of two-dimensional model of a dispersion medium respectively; Tn, rn, trans- 
mission and reflection coefficients of a stack of n identical planes; em, Rm, emissivity and 
reflection coefficient of surface of dlsperse system; qb, qbs, q~, qbm, qbm, 6p, 6m, surface 
densities of radiation fluxes in cell; ~-B, angular coefficients; a~-aT, coefficients used 
in solving system (5); Sm, Sb, areas of faces m and e, f, g, h, e', f', g', h' of cell re- 
spectively; Qref, Qabs, Qtrans, Qin, reflected, absorbed, transmitted, and incident radiation 
f luxe s. 
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POROUS MIXERS FOR GASDYNAHIC LASERS WITH SELECTIVE 

THE~IAL EXCITATION 

O. V. Achasov, P. A. Vityaz', 
S. A. Labuda, S. V. Popko, 
S. Sivets, N. A. Fomin, 
and V. K. Sheleg 

UDC 621.378.33 

Results of experimental studies are presented pertaining to the characteristics 
of a gasdynamic laser with selective thermal excitation and with the mixing de- 
vice made of porous material. 

Several interesting new methods of mixing the streams in gasdynamic lasers with selec- 
tive thermal excitation have been proposed in recent years []-3]. In the first study []] 
nitrogen from air was mixed with C02 aerosol, in the second study [2] the "subcritical" mode 
of adding the radiating component to the mixture was considered, and in the third study [3] 
designs of mixers for adding it to a supersonic supporting stream were developed. Although 
many designs already exist, it is now still difficult to decide on the final choice of mixer 
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